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Abstract-NASA’s Jet Propulsion Laboratory has embarked 
on the Mission Data System (MDS) project to produce a 
reusable, integrated flight and ground software architecture. 
This architecture will then be adapted by future JPL 
planetary projects to form the basis of their flight  and 
ground software. The architecture is  based  on identifying 
the states of the system under consideration. States include 
aspects of the system that must  be controlled to accomplish 
mission objectives, as well as aspects that are uncontrollable 
but must be known. The architecture identifies methods to 
measure, estimate, model, and control some of these states. 
Some states are controlled by goals, and the natural 
hierarchy of the system  is employed by recursively 
elaborating goals  until primitive control actions are reached. 

Fault tolerance emerges naturally from this architecture. 
Failures are detected as discrepancies between state 
estimates and model-based predictions of state. Fault 
responses are handled either by re-elaboration of goals, or 
by failures of goals invoking re-elaboration at higher levels. 
Failure modes  are modelled as possible behaviors of the 
system, with corresponding state estimation processes. 

Architectural patterns are defined for concepts such as 
states, goals, and measurements. Aspects of state are 
captured in a state-analysis database. Unified Modelling 
Language (UML) is used to capture mission requirements as 
Use  Cases  and Scenarios. Application of the state-based 
concepts to specific states is also captured in UML, 
achieving architectural consistency by adapting base classes 
for all architectural patterns. 

Within the Guidance, Navigation and Control domain of 
MDS, work has focussed in 3 areas: 
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Re-engineering and re-implementation of 
legacy Navigation systems within an object- 
oriented structure that is reusable from mission 
to mission and common between flight and 
ground systems; 

Identification of states and mission activities 
which are common across multiple missions; 

Exploitation of commonality between Attitude 
Control and Navigation functions, which  have 
historically been separated in previous JPL 
missions. 

These areas will  be demonstrated on a simulated reference 
spacecraft and mission, and then adapted by customer 
missions. Early deliveries will have levels of autonomy 
similar to existing JPL spacecraft, in order to demonstrate 
the applicability of the state-based concepts. This 
architecture should greatly simplify the implementation  of 
existing levels of autonomy, and should support 
significantly increased autonomy in future deliveries. 
Studies are ongoing to determine the mission requirements 
for highly integrated attitude and trajectory control 
functions, leading eventually to “6-degree-of-freedom” 
control. These functions will eventually be  implemented 
within the MDS architecture. 

The first customer mission is Europa Orbiter, to be followed 
by PlutoKuiper and Solar Probe. Discussions are  also 
ongoing to adapt MDS for Stellar Interferometry Mission 
and for control of the Deep Space Network. 

First prototype demonstration will be in Nov. 1999, with 
subsequent deliveries of increasing capability leading to a 
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delivery to the Europa Orbiter project in Nov. 200 1 .  2. STATE-BASED DESIGN 
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1. INTRODUCTION 

In order to reduce the cost of developing and operating 
planetary missions, NASA is attempting to build Faster, 
Better, Cheaper projects. As part of this initiative, the Jet 
Propulsion Laboratory has begun the Mission Data System 
(MDS) project. [ l ]  MDS attempts to reduce the cost of 
mission software development and operation by taking 
advantage of 2 forms of software reuse: reuse of code and 
reuse of concepts or frameworks. Code is reused from 
mission to mission, and common code is  used in both 
ground and flight applications. Common frameworks are 
reused in various domains throughout the flight and ground 
software. In most cases, MDS  is not inventing new  ways of 
performing mission functions. For instance, MDS  will not 
pioneer new forms of attitude control or navigation. Instead, 
MDS  will focus on systematic and reusable ways of 
describing and implementing capabilities found on previous 
missions. 

The MDS software architecture is “state-based”. It  is 
organized around the identification, estimation and control 
of the states of the project system. These states include the 
ground and flight segments. In general, these states are 
implicit in the designs of previous missions; MDS will 
focus on making these states explicit. 

In addition to the state-based architecture frameworks, MDS 
is divided into a number of application domains, including 
the Guidance, Navigation and Control domain. In  past 
missions, navigation (orbit determination and control) has 
been entirely a ground-based function, based on radiometric 
data and optical navigation images captured by the 
spacecraft; attitude control and maneuver execution has 
been entirely a spacecraft-based function. On New 
Millennium Deep Space 1 ,  optical navigation image 
processing, orbit determination and some level of orbit 
control planning was done onboard the spacecraft. It is 
anticipated that future missions will involve more integrated 
navigation and attitude control functions, ultimately leading 
to coupled orbit and attitude control for rendezvous and 
landing missions. 

For  MDS, state is defined as “a representation of the 
momentary condition of an evolving system”. States may 
range from the simple on-off state of a power switch to the 
trajectory of a spacecraft or a planet. It may even be 
possible to manage mission science data acquisition in terms 
of the state of the mission data repository, e.g. whether a 
particular observation has been acquired. 

An iterative process of state discovery will drive the design 
of the MDS frameworks, and  will drive the adaptation for a 
particular mission. Once a state has been identified, further 
analysis of the state will identify other states that must be 
defined and analyzed. States will be implemented in 
software as specific instances of the general state pattern. In 
object-oriented terminology, the architectural pattern for a 
state is defined by a state class definition; each type of state 
is a subclass of the State class, and will be instantiated in 
state objects. 

For each state, the following characteristics must be 
identified and, in some cases, implemented in software: 

State Representation  and Value  Domain 

This defines the representation of the state (e.g. an 
enumerated ON/OFF for a power switch, a continuous value 
for a temperature or pressure, a quaternion for a spacecraft 
attitude, etc.) as well as the range of the values the state can 
assume. This range is known as the value domain of the 
state, and  will  be the basis for goal constraints defined 
below. 

Goals 

A state may be controllable or uncontrollable within  the 
context of the  system  being described. I f  a state is 
controllable, there are actions that  can  be taken in mission 
operations to change it  value. Controllable states may 
include power switches (which  can be controlled by 
hardware commands), spacecraft attitude (which may be 
controlled by thruster firings or reaction wheel activation) 
or spacecraft trajectory (which may be controlled by delta- 
velocity maneuvers). Uncontrollable states are externally 
imposed - we  can observe them  but cannot change their 
values. Uncontrollable states are included in the mission 
system definition because their values are needed to 
estimate or control the controllable states. It  is possible to 
control the relation of a controllable state (such as 
spacecraft trajectory) to an uncontrollable state (such as the 
trajectory of Jupiter). Uncontrollable states may include 
equipment alignments onboard the spacecraft, or the 
trajectories of the planets and asteroids. 

MDS missions will be controlled by a network of goals on 
controllable states. A goal is defined as “a constraint on 



state” and represents an assertion about a state over a time 
range; this assertion is enforced by software. A goal for a 
power switch state may be that “the switch  is closed from 
time T1 to T2”; a goal on a spacecraft attitude may be  that a 
“spacecraft body vector is pointed at Jupiter from T1 to 
T2”. Note that identifying a celestial body (e.g. Jupiter) as a 
target implies a set of states whose values must be  known to 
perform that control; in this case, the states may be the 
spacecraft trajectory relative to the Sun and Jupiter’s 
trajectory relative to the Sun. 

Since a goal represents an assertion that is enforced over a 
time-span, other activities can assume that the condition 
holds true. This leads to an elaboration process, in which 
execution of a particular goal ( e g  pointing at Jupiter) 
requires that other goals be enforced ( e g  that gyro and star 
tracker power switches be maintained on). 

The set of goals active on the spacecraft at a particular time 
is represented in a temporal constraint network [2 ] .  Figure 1 
illustrates a simple goal network, represented as a UML 
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activity diagram. In the temporal constraint network, each 
goal is  represented as an activity that occurs between two 
“timepoints”; during this time interval, the state constraint 
stated by  the goal is enforced. A timepoint “fires”, initiating 

an activity, when all of its precedent activities are 
completed. Timepoints may also be constrained by earliest 
and  latest times, as well as smallest and  largest delays 
between timepoints. This allows the network to implement 
absolute-time, relative-time, or event-driven control. 

In this simple network, 2 states are defined - thruster heater 
power  switch  and thruster temperature. Thruster 
temperature is defined to be “ready for firing” when the 
power switch has been closed for a specified period of time. 
The goal on the thruster heater power switch  is that it  be 
closed. This has invoked primitive goals that the switch is 
closing (i.e. being commanded closed, followed by 
measurements to determine if it is closed); followed by a 
primitive goal that the switch remain closed (i.e. 
periodically monitoring the switch state, and recommanding 
if necessary). Reaching the “closed” states triggers a 
primitive goals on the thruster temperature to be in a 
“warming” state; once sufficient time has elapsed, the 
temperature is declared “ready for firing” and a process 
begins to keep it ready. 

State  Estimation,  Measurement  and  Uncertainty 
Representation 

Each state object is required to provide state estimation 
methods. These methods allow other objects to query the 
value of a state at a particular time. States may  be estimated 
from measurements that are available to the software, or 
may  be supplied by external sources (such as ground 
calibrations of device characteristics, astronomer’s 
observations of planetary ephemerides, etc.) 

The  MDS architecture makes a strong distinction between 
measurements and state estimates. A measurement is a 
sample taken at a particular time. It  may be a function of 
several states and does not directly say anything about the 
value of those states immediately before or after the sample. 
A state has a value  at  all  times. The value at any time can  be 
estimated, based  on measurements and models of the 
dynamics of the state. (Of course, some states may have 
“degenerate” dynamics models - they are  assumed constant. 
The dynamics for a calibration state may  be  simply that the 
value  is constant between calibrations.) 

In addition to state estimates, each state is  also responsible 
for representing the uncertainty of the estimate. Since the 
representations of uncertainty are highly state-specific, the 
MDS architecture requires that state estimates  be capable of 
responding to stereotyped queries about uncertainty, such as 
the probability that a state is within a particular value 
domain (range). In addition, each state must have a way of 
representing that the state estimate is unknown or highly 
uncertain. 

Among other applications, state estimate uncertainty will be 
used to control the configuration and  initialization of the 
spacecraft. Controllers will be able to wait  until  needed 



estimates become available, and  then initiate control. Goal 
elaborations will be able to set goals on estimate knowledge 
or uncertainty. Sensor and estimators will  be configured to 
provide estimates and enable control. These should simplify 
the process of initializing the spacecraft, at launch or after a 
fault. The order of events will flow naturally out of the 
chains of dependency on estimates. 

It  is expected that estimates of state performed onboard will 
be telemetered to the ground as “state models”, which 
summarize the behavior of the state over contiguous time 
periods. A state model may represent a curve-fit or other 
approximation to the state evolution; this makes it adaptable 
to successive compression methods to reduce storage and 
downlink volumes. 

There will also be states estimated on the ground, for 
instance, spacecraft trajectories for ground-based 
navigation. MDS plans to use  the  same framework for 
ground and flight estimation. The project is also planning to 
use “replication” to uplink these estimates, making them 
consistent between the ground and flight systems. 

State Dynamics & Measurement  Models 

In order to support state estimation, each state will include 
dynamics models, of how the state evolves over time. This 
model will include the effect of control actions as well as all 
environmental factors influencing the state value. This 
allows an estimator to propagate the effect of control actions 
(e.g. thruster firings) and to use filters to combine state 
propagations with measurements to provide state estimates. 

Goal Elaborations and State  Control Actions 

Each controllable state must define a controller, which will 
execute any control law  required to enforce a goal 
constraint. The state must also specify and conditions on 
other states that must be enforced in order to control this 
state; these are normally expressed as “subgoals” - goals 
delegated to other states. As cited above, a goal to maintain 
attitude may result in subgoals to maintain power to sensors 
and actuators. The recursive process of elaborating goals 
into nets of subgoals eventually bottoms out in “primitive 
goals” which require no further elaboration 

Primitive goals correspond to the action commands 
typically used in sequences on previous missions; these are 
executed by standard control algorithms, which are capable 
of issuing power switch commands, slewing to commanded 
attitudes, etc. In general, these primitive goals are expected 
to follow patterns of “transitioning to desired state” ( e g  
“turning switch on”, “slewing to point at Jupiter”), followed 
by “maintaining desired state” (e.g. “periodically checking 
that switch is still on”, “holding attitude pointing at 
Jupiter”). Since the desired state is specified explicitly, 
failure to maintain a goal constraint can  be  used as the basis 
for fault detection and correction. 

3. INTEGRATED GUIDANCE, NAVIGATION AND 
CONTROL 

Why Integrated Guidance, Navigation and Control? 

On previous planetary missions, attitude control 
(determination and control of rotational orientation) and 
navigation (trajectory determination and control) have been 
treated as separate disciplines. This has been done largely 
because of the need to close loops  at significantly different 
timescales. Attitude control requires loop times of fractions 
of a second; navigation loops (from orbit determination to 
maneuver execution) typically take hours to days. In 
addition, navigation has required data types only available 
on ground (radiometric observables) or data types requiring 
large amounts of processing and human intervention (such 
as optical navigation images). For ballistic (chemical- 
propulsion) missions, trajectory corrections are done hours 
to months apart, so it  is feasible to close loops through the 
ground. 

Inevitably, there has been  some coupling between the 
attitude control and navigation disciplines. For instance, 
attitude control thruster firings perturb the spacecraft 
trajectory and  must be incorporated into the trajectory 
model. Navigation teams have routinely included both 
previous and planned attitude control activities (such as 
spacecraft turns) in the trajectory estimate and propagation. 
Navigation software has included propulsion models (such 
as thrust as a function of temperature, pressure and  fuel 
flow rates) and processing of thruster firing telemetry, as 
needed  from  mission to mission. On Cassini, attitude 
control thrusting has been modelled redundantly by the 
Attitude Control and Navigation teams. MDS seeks to 
eliminate this redundancy, and possible miscommunication, 
by coordinating and reusing states and models for 
propulsion, attitude, and trajectory. 

With increasingly complicated missions, and increasingly 
more capable onboard computers, navigation functions have 
begun to migrate onto the spacecraft. 10 years ago, Galileo 
carried a simplified planetary ephemeris computation to 
allow pointing at the Earth or Jupiter; this required a 
laborious process to translate navigation ephemerides to a 
reduced-order representation. Onboard navigation was 
greatly expanded on  New  Millennium  Deep Space 1 (DS1). 
DSI performs onboard processing of optical navigation 
images and incorporates these, along with thrusting 
perturbations, into orbit estimates. These orbit estimates are 
used autonomously to compute and execute trajectory 
control maneuvers, using ion propulsion and chemical 
propulsion systems. Since planetary and spacecraft 
ephemerides are already onboard to support navigation, 
these ephemerides are used directly to provide pointing 
directions, rather than separate reduced-order 
representations. 



Future missions will require even  more integration of 
attitude control and navigation functions. Ion propulsion 
missions will  be performing trajectory control continuously 
over months, rather than at discrete times. Rendezvous and 
landing operations on asteroids will  be extremely sensitive 
to trajectory perturbations due to thruster firings, and will 
require onboard processing of navigation observables 
(optical navigation images, radar distance measurements, 
and  even onboard radiometric measurements). Aerobraking 
missions show strong relations between spacecraft 
orientation and orbital changes, and require trajectory 
correction maneuvers with turnarounds of hours or less. 

These considerations led the MDS  project to identify an 
integrated Guidance, Navigation & Control (GNC) domain 
to apply the MDS state-based concepts to attitude control 
and navigation functions.. 

Next Generation Navigation 

Prior to initiation of the MDS project, JPL’s 
Telecommunications and  Mission Operations Directorate 
had begun a project to build the Multi-Mission Operational 
Navigation Tool Environment (MONTE) [4]. MONTE will 
replace the legacy Navigation code, some of it 30 years old, 
with a multi-mission object-oriented design. MONTE  is 
being integrated into MDS as part of the GNC domain; it 
will also be used  by non-MDS missions. 

Initial GN&C Capabilities 

Initial GNC activities are focusing on implementing 
previous levels of mission capability within the MDS 
architecture. For the next 2 years, the focus will  be  on a 
reference mission to fly a ballistic (chemical-propulsion) 
interplanetary mission, with ground-based navigation; this 
capability will support the interplanetary cruise phase of the 
Europa orbiter mission. 

The first  GNC capabilities to be implemented  will provide 
the ability to initialize the spacecraft attitude control 
capabilities. This includes activities typically done at 
launch: 

Detumbling the spacecraft (controlling rate using 
gyros and thrusters), 

Using a Sun sensor to establish Sun direction, 

Using a star sensor to establish inertial pointing 
reference, 

Pointing a communication antenna to Earth. 

Subsequent capabilities will include performance of 
trajectory correction maneuvers, and addition of fault 
detection and redundancy management. 

MDS goal elaboration capabilities are being used to achieve 
the actuator and sensor configurations necessary to support 
these mission activities and to orchestrate the necessary 
state transitions. The  use of event-driven goal nets should 
simplify the task of building launch sequences and state 
transition software. 

The integration of attitude control and navigation is 
beginning with these initial steps. Since both Navigation 
and Attitude Control deal with rotations of coordinate 
frames relative to each other, common software will be  used 
for coordinate manipulation in both areas. 

Navigation ephemerides will be used to represent spacecraft 
trajectories and the trajectories of celestial  bodies  of 
interest:  Earth  and other planets, asteroids, moons, etc. The 
navigation system includes representations of targets on 
rotating bodies. A camera onboard the spacecraft can track a 
target on Jupiter’s moon Europa while the spacecraft orbits 
Jupiter. 

These capabilities will be integrated into the MDS 
architecture by representing each of these potential targets 
as a state. The state will allow users to query information 
about the target (e.g. direction, distance, angular rate, 
velocity) and uncertainty of this information at any time. 

Trajectory targeting is traditionally done by specifying a 
desired condition on spacecraft position andor velocity 
relative to a celestial body. One of the long-range objectives 
for MDS GN&C  is to formalize these trajectory targets as 
goals on one or more states. Casting the problem in this 
framework should provide smoother coordination between a 
ground navigation system and on-board functions and 
facilitate the migration of some or all of the trajectory and 
maneuver design functions from ground to the on-board 
flight software. 

A somewhat simpler objective will  be to include “goals” on 
the geometric relation between a spacecraft and a target 
body. This would allow the navigation software to signal 
events when particular geometric relations apply. (This 
event-detection logic is already in the MONTE software. 
Scientists designing observations commonly use it.) For 
instance, it  would  be possible to trigger imaging at 
particular distances from a target or at particular phase 
angles. (Phase angle is the Sun-target-spacecraft angle, and 
determines lighting conditions on the target). This 
application of goals is somewhat counter-intuitive, since  it 
does not invoke any direct control actions. However, it  is 
consistent with the MDS notion of monitoring a condition 
on a state. As  with current mission design, analysis and 
design  would be required to determine a priori  when  the 
desired geometry would occur. 

A particularly interesting challenge will be to determine 
how to represent ephemeris uncertainties in forms that  are 
usable  by non-navigation experts. These uncertainties may 



be  used, for instance, in determining how  many  images are 
required in a mosaic to cover the error ellipse for a target, or 
in determining what deadband to use to maintain pointing at 
a target. Ephemeris uncertainty has not been explicitly used 
in previous software applications, so there is still some 
uncertainty as to how  it will be used. 

Onboard Time Usage 

With the introduction of onboard Navigation, it has become 
necessary to become more rigorous about onboard 
definition and  usage of time.  In previous missions, the 
correlation of onboard clock to other time frames (e.g. 
International Atomic Time or TAI) was measured by the 
ground and  used to adjust ground-produced products. 
Spacecraft telemetry time-tags were adjusted to allow 
interpretation in TAI or Universal Time Correlated (UTC). 
Command sequences to the spacecraft were adjusted to 
translate desired UTC times into spacecraft clock values. 

With the advent of onboard ephemerides, it  becomes 
necessary to have  an onboard time source that can provide 
time in the navigation time frames. This also makes  it 
possible to command directly in the time frame of interest, 
rather than going through the ground-based TAI-spacecraft 
clock translation. This also made it possible to incorporate 
late onboard navigation updates into the command 
sequence, as was done with the DSl asteroid flyby. 

On  DS1, this was done by providing offset-and-frequency 
corrections to the onboard clock, and by incorporating 
occasional corrections from the ground-based clock 
correlation process. Since MDS is designed to run  on a 
distributed onboard hardware set, with a number of 
processors and  local clocks, the clock-correlation process 
will be generalized to allow correlation of multiple clocks, 
with  all correlations ultimately traceable to a TAI  reference. 
This reflects the MDS philosophy of finding general 
patterns and reusing them extensively. 

Future Capabilities in  GNC 

Introduction of onboard orbit determination and control 
enables new capabilities in the trajectory maneuver 
correction loop. Precedents for these capabilities have 
already been demonstrated on DSl . Rather than relying 
solely on a priori analytical models of non-gravitational 
accelerations induced  by thruster firings, solar pressure  and 
atmospheric friction (during atmospheric braking or 
aerobraking phases), these perturbations can be estimated 
from in situ measurements and incorporated in real-time. 
More timely information can  be introduced into the orbit 
determination solution, and these perturbations can  be 
compensated in the trajectory correction maneuvers. 

MDS  GNC  will be able to compute non-grav. accelerations 
due to thruster firings, based  on propellant pressure  and 
temperatures, and  will  be able to keep track of propellant 

mass depletion. Chemical trajectory control maneuvers may 
be terminated based on actual accumulated changes to 
trajectory, rather than solely on ground-predicted times or 
accelerometer data. This may simplify the process of 
ground modelling of maneuvers, and should improve 
accuracy of trajectory control. 

4. FAILURE DETECTION AND CORRECTION 

JPL planetary missions are characterized by long 
communications delays, due to the long distances involved 
(light-hours in some cases) and to the fact that 
communication with the spacecraft cannot be maintained 
continuously. For this reason, JPL has put a high priority on 
fault detection, identification and reconfiguration, 
commonly referred to as “fault protection”. It  is anticipated 
that fault protection will be incorporated within the general 
MDS architecture. Since the architecture envisions the use 
of behavior models, fault detection will generally work by 
determining if a device or process  is adhering to its models 
- if its goals are being achieved. An inability to maintain a 
goal may result in finding alternative or degraded modes of 
operations, such as using redundant equipment or functional 
redundancy for estimation or control. 

If a feasible configuration (e.g. redundant equipment or 
alternate modes) cannot be established to maintain a goal, 
the goal can be declared as “failed”. This will result in 
notification to each of the goals that are dependent on  the 
failed subgoal. The usual response to this failure will  be re- 
elaboration of the parent goal, with the new information that 
certain subgoals are unachievable. Again, an alternate path 
may be found, or the goal may  be failed. Thus, faults will 
propagate within the state/goal architecture, and 
propagation will be constrained as low as possible. 

5.  CURRENT  STATUS AND FUTURE PLANS 

As of November 1999, MDS  is implementing the first 
prototype of an integrated application of the state-based 
architecture. This “Detumble” prototype implements a 
primitive goal network to switch  on a simulated gyro 
package and propulsion system, wait appropriate warm-up 
times, and activate controllers to null spacecraft rates. No 
goal elaborations are implemented, and there is no 
redundancy or fault protection. This prototype demonstrates 
the lowest layer of the state/goal structure, and  its 
interaction with traditional control laws. The Detumble 
prototype has also demonstrated the application of the MDS 
development process, including identification and analysis 
of states, use of Unified Modelling Language to represent 
operational scenario, collaborating classes and statechart 
behavior, and  use of code auto-generated from the UML 
specification. 

The next development step calls for adding goal elaboration 
for the detumble activities. Following this, the GNC  domain 



will  add incrementally add capabilities. By November 2000, 
GNC plans to provide attitude control and navigation 
capabilities to point at  and track celestial bodies, and 
perform chemical trajectory correction maneuvers. 

The MONTE development and MDS integration will 
continue in parallel with the onboard MDS software 
development. This will support use of MONTE by non- 
MDS missions; use of the navigation functions in the MDS 
ground system, and eventual onboard incorporation of some 
navigation functions (such as optical navigation and 
maneuver planning and execution). 

By November 2001, the flight software capabilities will be 
extended to include detection and correction of faults and 
use of redundant components. Ground navigation 
components will  be available for trajectory estimation and 
control during interplanetary cruise. This software will be 
delivered to the Europa Orbiter project as the basis for their 
adaptation. 
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